

Resolution studies in a MPGD-TPC with charge dispersion on a resistive anode

Presented by Khalil Boudjemline

On behalf of A subset of the ILC-TPC R&D collaboration

CAP Congress 2006, Brock University St Catharines, Ontario

Outline

1. ILC central tracking detector: the TPC

- 2. Charge dispersion using a resistive anode
- 3. KEK beam tests
- 4. Results: comparison to cosmic data
- **5.** Summary

Main Tracker at the International Linear Collider

Central (main) tracking requirement

- Excellent track reconstruction efficiency and momentum resolution over a large solid angle.

- Hermetic & minimized material.
- Robust, reliable, stable.....

Time Projection Chamber

ILC-TPC challenge:

- $\sigma_x \sim 100 \ \mu\text{m}$, 200 pads, $\sim 2 \ \text{x} \ 6 \ \text{mm}^2$

near the ultimate limit from diffusion & electron statistics.

- the goal is ~ 2 times better than conventional TPC readout.

Tradional Readout: wire/pad

Disadvantage

- $E \times B$ effect and track angle systematic effect \rightarrow worse spatial resolution

Use the MPGD readout (Micromegas or GEM) to reduce the E×B effect.

Micro Pattern Gas Detectors

Solutions:

- 1- decrease by a factor >5 the pad width \rightarrow huge number of channels
- 2- diffuse the charge after the amplification
 - \rightarrow impossible with Micromegas
 - \rightarrow very difficult with GEM
- 3- set a resistive foil on the pad plane

Resistive anode / charge dispersion

- a high resistivity film bonded to a readout plane with an insulating spacer

- 2 dim continuous RC network defined by material properties and geometry.

- point charge at r = 0 & t = 0 disperses with time.

KEK complex, Tsukuba, Japan

- 4 GeV/c hadrons
- 0.5 & 1 GeV/c electrons
- Super conducting 1.2 T magnet
- Inner diameter : 850 mm
- Effective length: 1 m

KEK beam test

Tested prototypes

- Micromegas 10 x 10 cm²
- Drift distance: 16 cm
- 126 pads, $2 \ge 6 \text{ mm}^2$ each in 7 rows
- ALEPH preamps + 200 MHz FADCs

- Micromegas & GEMs 10 x 10 cm²
- Drift distance: 25 cm
- 384 pads, 2.3 x 6.3 mm² each in 16 rows
- ALEPH preamps + 11 MHz Aleph Time Projection Digitizers

Beam Test Team

CANADA

Carleton University: A. Bellerive, K. Boudjemline, M. Dixit, J. Miyamato, E. Neuheimer, E. Rollin, K. Sachs & Y. Shin **University of Montreal:** J.-P. Martin

FRANCE

DAPNIA CEA Saclay: D. Burke, P. Colas,A. Giganon & I. GiomatarisLAL Orsay: V. Lepeltier & Th. Zerguerras

GERMANY

MPI (Munich): R. Settles

JAPAN

Hiroshima University: H. Kuroiwa & T. Takahashi,
KEK/IPNS: K. Fujii, M. Kobayashi, T. Matsuda & H. Yamaoka
Kinnki University: Y. Kato
Kogakuin University: T. Watanabe
Saga University: T. Araki, H. Fujishima, T. Higashi, K. Kodomatsu, A. Sugiyama, T.Yamamoto & Y. Tanaka
Tsukuba University: A. Yamaguchi
Tokyo University of Agriculture & Technology: M. Habu, S. Matsushita, K. Nakamura & O. Nito

Example of a track

Transverse Spatial Resolution

Carleton TPC

- Ar/iC4H10 95/5

- 2 X 6 mm² pads
- $\label{eq:constraint} \begin{array}{l} \ B = 1 \ T \\ \rightarrow \ C_D = 125 \ \mu m/cm^{1/2} \end{array}$

Transverse Spatial Resolution

Khalil Boudjemline

Summary

- A first demonstration of the charge dispersion readout concept for the MPGD-TPC in a magnetic field.
- $\sim 50~\mu m$ spatial resolution for short drift distances with 2 x 6 mm^2 pads in a 1 T magnetic field.
- With smaller transverse diffusion at ~ 4 T magnetic field, the 100 μm resolution goal appears within reach for the ILC-TPC using a resistive anode.

Future

Cosmic tests at DESY this summer at 4T. Built a large prototype TPC.

EXTRA SLIDES

Micromegas with a resistive anode for the charge dispersion readout

EXTRA SLIDES

When there is no ExB effect, the wire/pad TPC resolution approaches the diffusion limit for the Aleph TPC

Average Aleph resolution ~ 150 μ m. Resolution ~ 100 μ m even for 2 m drift. Limit from diffusion σ (10 cm drift) ~ 15 μ m; σ (2 m drift) ~ 60 μ m.

Khalil Boudjemline

Beam test motivations

Khalil Boudjemline

CAP Congress 2006

Pad Response Function

Ar/iC4H10 95/5

x_{pad}-x_{track} / mm

$$PRF[x,\Gamma(z),\Delta,a,b] = \frac{1+a_2x^2+a_4x^4}{1+b_2x^2+b_4x^4}$$

Track fit method

2 mm

- using the PRF to fit the pad signals
- track fit: linear fit $x_{track} = x_0 + \tan(\phi) y_{row}$
- χ^2 minimization $\rightarrow x_0$ and ϕ

$$\chi^{2} = \sum_{rows} \sum_{i=pads} \left(\frac{A_{i} - PRF_{i}}{\partial A_{i}} \right)^{2}$$

Definitions:

- residual: x_{row}-x_{track}
- bias: mean of x_{row} - $x_{track} = f(x_{track})$
- resolution: σ of the residuals

Bias for central rows

Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$	track
Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$	••••• •••••• ••••••• ••••••• •••••••• mesh
Intrinsic rise time	$R(t) = \frac{t}{T_{rise}} \text{ for } 0 < t < T_{rise}$ $= 1 \text{for } t > T_{rise}$ $= 0 \text{for } t < 0$	pads
Preamplifier effect	$A(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$ $= 0 \qquad \qquad \text{for } t < 0$	
Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$ $h = 1/RC$	x

Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$	track
Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$. mes
Intrinsic rise time	$R(t) = \frac{t}{T_{rise}} \text{ for } 0 < t < T_{rise}$ $= 1 \text{for } t > T_{rise}$ $= 0 \text{for } t < 0$	<u>pads</u>
Preamplifier effect	$A(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$ $= 0 \qquad \qquad \text{for } t < 0$	
Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$ $h = 1/RC$	t

Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$	track
Longitudinal diffusion	$1 - t^2$	
	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{t}{2\sigma_t^2})$	mesh
Intrinsic rise time	$R(t) = \frac{t}{T_{rise}} \text{for} 0 < t < T_{rise}$	pads
	$ \begin{array}{l} = 1 & \text{for} t > T_{rise} \\ = 0 & \text{for} t < 0 \end{array} $	
Preamplifier effect	$A(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$	
	= 0 for $t < 0$	1
Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$	
	h = 1/RC	0 T _{rise} t

$$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$$

Longitudinal diffusion

$$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$$

Intrinsic rise time

$$R(t) = \frac{t}{T_{rise}} \quad \text{for} \quad 0 < t < T_{rise}$$
$$= 1 \quad \text{for} \quad t > T_{rise}$$

t < 0

Preamplifier effect
$$(t)$$

A(t) = exp
$$\left(-\frac{t}{t_f}\right)\left(1 - \exp\left(-\frac{t}{t_r}\right)\right)$$
 for $t > 0$
= 0 for $t < 0$

$$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$$
$$h = 1/RC$$

Transverse diffusion

$$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$$

Longitudinal diffusion

$$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$$

Intrinsic rise time

$$R(t) = \frac{t}{T_{rise}} \quad \text{for} \quad 0 < t < T_{rise}$$
$$= 1 \quad \text{for} \quad t > T_{rise}$$

$$= 0 \quad \text{for} \quad t < 0$$

reamplifier effect

$$A(t) = \exp\left(-\frac{t}{t_f}\right)\left(1 - \exp\left(\frac{t}{t_r}\right)\right) \text{ for } t > 0$$

$$= 0 \qquad \text{ for } t < 0$$

$$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x^2 + y^2)}{4th}\right)$$
$$h = 1/RC$$

see slide 6