Spatial Resolution of a MPGD readout TPC Using the Charge **Dispersion Signal**

Carleton University

A. Bellerive K. Boudjemline

R. Carnegie M. Dixit (P.I.)

A. Kochermin J. Miyamoto

H. Mes E. Neuheimer

E. Rollin K. Sachs

Université de Montréal

J.-P. Martin

Chairs

Alain Bellerive Canada Research Chair

Outline

- Detector Design for the ILC
- Physics Challenge
- R&D on TPC at Carleton
- Results from Cosmic Data
- Planning Ahead
- Summary

Alain Bellerive Canada Research Chair

Detector Concept Design for the ILC

Tracking Requirements

- Excellent momentum resolution
- Precision vertexing (b-tagging)
- Measure about 200 track points with a resolution of 100 µm or less for all tracks
- Resolution goal near the ultimate limit from diffusion & electron statistics
- Hermetic & minimized material
- Operate continuously throughout ~1 ms train
- Particle flow for overall event reconstruction
- Robust, reliable, stable, affordable & long life time

Precision measurements: Higgs Boson

Tracking challenge

Model Independent Higgs reconstruction via the standard

reference reaction:

 $\sigma(1/p_t) \sim 2 \times 10^{-5} (GeV/c)^{-1}$ is necessary for the tracker

 $\sigma(1/p_t) \sim 1.5 \times 10^{-4} (GeV/c)^{-1}$ for the TPC only

$$HZ \rightarrow \ell \ell X$$

$$M_H = 120 \,\mathrm{GeV/c^2}$$

Background

$$\sqrt{s} = 350 \, GeV$$

$$L = 500 \, fb^{-1}$$

Time-Projection-Chamber (TPC)

Conventional wire/pad TPC readout

- E×B and track angle systematic effects cannot be avoided in a wire/pad TPC (wires few mm apart)
- Even when systematics cancel, the resolution is determined by the width of the pad response function and not by physics of diffusion
- Large pad response function further limits the TPC two-track resolving power
- Positive ion space-charge effect also adds complication
- Technology used at LEP with $\sigma = 200 \, \mu m \, \Theta$

Micro-Pattern-Gas-Detector (MPGD) Readout

Charge Collection on MPGD Readout Pads

- No preferred direction for tracks
- Electric field very uniform
- Tiny amplification MPGD holes
- Small multiplication gap
- Positive ion feedback reduced
- Pads dimension 2 × 6 mm²
- Limited by charge collection on a single pad for a TPC in high B-field
- Difficult centroid finding
- Resolution

$$\sigma = 2 \text{ mm} / \sqrt{12} \approx 580 \text{ } \mu\text{m}$$

Optimize readout geometry and diffusion

Study induced signal on neighboring pads

Gas Electron Multiplier (GEM) and Micromegas

MPGDs achieve excellent $\approx 40~\mu m$ resolution with 200 μm wide pads This implies a VERY large number of channels and high cost

ILC TPC channel count is already ~ 1.5x10⁶ with 2 mm wide pads Not practical to use pads much narrower than 2 mm

Maximize diffusion & multiple gap (GEM) – resistive anode (Micromegas)

The Concept of Charge Dispersion

 Modified GEM anode with a high resistivity film bonded to a readout plane with an insulating spacer

 2-dim continuous RC network defined by material properties and geometry

Point charge at r=0 & t=0 disperses with time

Time dependent anode charge density sampled by readout pads:

$$\frac{\partial \rho}{\partial t} = \frac{1}{RC} \left[\frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} \right]$$

$$\Rightarrow \rho(r,t) = \frac{RC}{2t}e^{\frac{-r^2RC}{4t}}$$

Cosmic Ray Resolution of a MPGD-TPC

- Instrumentation lab at Carleton
- 15 cm drift length TPC: GEM
 & Micromegas readout [B=0]
- Ar:CO₂/90:10 chosen to simulate low transverse diffusion in a magnetic field.
- DAQ: 200 MHz custom 8 bit FADCs [UdeM]
- Aleph preamps $\tau_{Rise} = 40 \text{ ns } \tau_{Fall} = 2 \mu \text{s}$
- 60 tracking pads
 2 x 6 mm²
- 2 trigger pads
 24 x 6 mm²

TPC transverse resolution for Ar:CO₂ (90:10)

Compared to direct charge readout, charge dispersion gives better resolution for GEM with Z dependence close to the diffusion limit. For Micromegas, the resolution is also better than for direct charge GEM readout.

15

Goals of the Upcoming Test Beam

- Location: KEK 1-4 GeV/c hadron beam
- Superconducting Jacee magnet: 1.2 Tesla
- New readout pads with 128 channels

- Test the resolution of GEM and Micromegas with resistive foils within a magnetic field
- Investigate two-track reconstruction
- Study concept of new fast-electronics

Future & International Detector Design

- Strong collaboration on TPC R&D between:
 - UVIC/Carleton/UdeM (Canada)
 - Aachen/Hamburg/Karlsruhe/MPI-Munich (Germany)
 - Orsay/Saclay (France)
 - Berkeley/Cornel/Purdue (USA)
 - KEK & DESY
- The ILC detector Conceptual Design Report ~2007/8 Strong commitments to be part of these activities
- Large prototype at DESY with the Jacee magnet:
 - Simulation and two-track pattern recognition
 - Field cage and investigation of non-uniformity
 - Design of the end plate readout and electronics
- Good timing to join the ILC/Canada effort

Summary & outlook

- TPC with MPGD readout is a very well suited technology for the ILC
- Better space point resolution has been achieved for GEM & Micromegas readout TPC with a resistive anode than for the conventional direct charge readout TPC
- Measured resolution near the diffusion limit in cosmic tests with no magnetic field for MPGD with resistive anodes
- With suitable choice of technology, gas, & electronics for a resolution of ~100 μm for all tracks (2.5 m drift) appears within reach for the ILC tracking system
- The diffusion limit will be lower in a magnetic field: cosmic & beam tests planned to confirm the diffusion limit of resolution for a TPC in a magnet [KEK and DESY]
- Future large scale prototype: Canada is engaged in the design and construction of a large international prototype with MPGD readout

Alain Bellerive

Canada Research Chair

