# The International Linear Collider – a precision probe for physics in the post-LHC era

## Madhu Dixit TRIUMF/Carleton University

Session WE-P2, CAP Congress Quebec City, 11 June 2008 <u>The ILC - the next high energy physics</u> <u>accelerator after the LHC</u>

•LHC starts this summer - p+p at 14 TeV
•New Physics discoveries appear imminent
•ILC will be the next world facility for particle physics after the LHC.
•The ILC physics case & its experiments
•Canadian R&D toward building the detector for the ILC
•Outlook

#### **The International Linear Collider ILC**



 $e^+ e^-$  Linear Collider  $E_{cm}$  adjustable from 200 – 500 GeV Two experiments, complementary & contrasting technologies

Single interaction region, 14 mrad crossing angle Luminosity  $\rightarrow \int Ldt = 500 \text{ fb}^{-1}$  in 4 years Ability to scan between 200 and 500 GeV Energy stability and precision below 0.1% Electron polarization at least 80% The machine upgradeable to 1 TeV <sub>CAP Quebec 11/6/2008</sub>

### INTERNATIONAL LINEAR COLLIDER REFERENCE DESIGN REPORT AUGUST, 2007

#### ILC Global Design Effort & World Wide Study



CAP Quebec 11/6/2008

![](_page_4_Figure_0.jpeg)

# December, 2007

•UK: STFC cuts ILC funding •US: The Congress cuts ILC budget by 75% three months into the new fiscal year. Money already spent. •Aftermath: Revised schedule Maintain momentum -Focus on critical R&D items Prepare for LHC results

Scientific case for ILC still valid

### The Standard Model (SM)

Building Blocks of Matter

![](_page_6_Picture_2.jpeg)

![](_page_6_Figure_3.jpeg)

•EW symmetry spontaneously broken through Higgs mechanism
•SM highly successful, internally consistent in agreement with experiments within ~ 0.1%.

The neutral scalar Higgs particle responsible for EW symmetry breaking remains undiscovered

## Higgs constrains from precision SM fits

![](_page_7_Figure_1.jpeg)

### <u>Telltale signs for New Physics</u>

□ The predicted Higgs mass unexpectedly low ~ 100 GeV H\_\_\_\_  $M_H \sim 10^{19}$  GeV near Planck mass from large radiative corrections □Low Higgs mass requires term by term cancellation of divergences

Fine-tuning to cancel divergences is unnatural
With Supersymmetry at ~ 1 TeV, sparticle loops naturally cancel particle loop divergences

 If no Higgs below ~ TeV, New Strong Interactions among W Z bosons needed to restore unitarity.

### Cosmic connections

Existence of Dark Matter (DM) is well established.

![](_page_9_Figure_2.jpeg)

~ 1 TeV Weakly Interacting Massive particles (WIMP) could account for the observed DM density. **Can WIMP be the lowest mass SuperSymmetric particle?** 

#### □How to Unify gravity with other forces?

Motivates String theory & Extra Dimensions Part of the solution for other problems

CAP Quebec 11/6/2008

### TeV physics with the LHC & with the ILC

 CM parton-parton collisions
 Unknown E<sub>CM</sub> & quantum numbers.
 Can discover TeV physics directly

![](_page_10_Picture_2.jpeg)

Clean point like collisions
E<sub>CM</sub> & quantum numbers tunable
Use polarization to suppresse
backgrounds
A powerful tool to probe New
Physics

![](_page_10_Picture_4.jpeg)

![](_page_11_Figure_0.jpeg)

# ILC sensitivity to New Physics

The LHC has higher mass reach, but precision makes ILC the ultimate probe of new physics

### •ILC physics menu:

 The nature of electromagnetic symmetry breaking & detailed study of the Higgs

- Supersymmetry, its mass spectrum & parameters
- New gauge interactions
- •Extra dimensions
- Precision measurements

  - $\begin{array}{l} \bullet \Delta M_{\text{Top}} \approx 100 \text{ MeV}, \ \Delta \Gamma_{\text{Top}} \approx 2\% \\ \bullet \Delta M_Z \& \ \Delta M_W \approx 5 \text{ MeV} \text{ (from 30 MeV)} \\ \bullet \Delta (\sin^2 \vartheta) \approx 10^{-5} \text{ (from 2} \cdot 10^{-4}) \end{array}$

### •LHC & ILC Complementary

### Essential to understanding the New Physics

### <u>Higgs physics at the ILC</u>

- •Detailed precision measurements
- •Establish spin, parity (SM Higgs 0<sup>+</sup>)
- Measure decay modes to discriminate between
   SM and SuperSymmetric Higgs
- •Higgs couplings to gauge bosons & to itself to confirm its role in EW symmetry breaking

### Higgs production at the ILC

![](_page_14_Figure_1.jpeg)

ILC RDR, arXiv:0709.1893

ttH kinematically limited at 500 GeV ILC

CAP Quebec 11/6/2008

<u>Higgsstraulung - the Golden channel for Higgs studies</u>

![](_page_15_Figure_1.jpeg)

 $e + e - \rightarrow ZH$   $Z \rightarrow \mu + \mu - ; e + e -$ Evidence of new physics if the Higgs production rate is not as expected

I. Higgs mass & production rates measured independent of decay modes - includes even invisible Higgs decays
II. Enables detailed studies with tagged Higgs
III. Fully establish Higgs mechanism!
IV. Higgs factory
Some examples....

CAP Quebec 11/6/2008

#### <u>Measurements of Higgs production couplings, decay</u> <u>branching ratios (from ILC RDR)</u>

![](_page_16_Figure_1.jpeg)

Makes possible model independent extraction of Higgs couplings, constraints non SM Higgs - only possible at ILC

CAP Quebec 11/6/2008

![](_page_17_Figure_0.jpeg)

#### LHC-ILC interplay on Higgs couplings

![](_page_18_Figure_1.jpeg)

KD, Dührssen, Heinemyer, Logan, Rainwater, Weiglein, Zeppenfeld - preliminary

Precision mostly dominated by ILC. ttH coupling better than LHC alone due to ILC input to LHC fit.

CAP Quebec 11/6/2008

#### Detector requirements for ILC physics

Excellent vertex resolution

Impact parameter  ${}_{5\,\mu m} \oplus \frac{10\,\mu m \,GeV/c}{p \sin^{3/2}(\theta)}$  (~1/ 3 of SLD) Improve tracking momentum resolution, Identify heavy flavors decays for Higgs studies Efficient Z, W & t reconstruction

 Calorimeter: Highest, granularity & resolution Particle flow to measure separately charged particle, photons and neutral energy to improve resolution Resolution ~ 30% / √(E) (2 time better than LEP) High purity W & Z reconstruction Higgs reconstruction in multijet events

![](_page_20_Figure_0.jpeg)

Purity "d" for  $e^+ e^- \rightarrow v v bar WW/e^+e^-ZZ$  events versus invariant mass cut for two values of calorimeter resolution [from ILC RDR]

### <u>Measure Higgs with precision limited only by</u> <u>the knowledge of beam energy</u>

Unprecedented demands on the tracker momentum resolution  $\Delta(1/p_T) \sim 2$  to 3 x10<sup>-5</sup> (GeV/c)<sup>-1</sup> more than 10 times better than at LEP!

![](_page_21_Figure_2.jpeg)

 $\mu^+$   $\mu^-$  recoil mass at  $\sqrt{s}$  = 500 GeV.  $M_H$  = 120 GeV, for two values of the tracker resolution.

CAP Quebec 11/6/2008

### <u>A TPC tracker for the ILC</u>

### TPC an ideal central tracker for ILC

- Low mass, minimal photon conversion
- ·High efficiency, high granularity continuous tracking,
- •Excellent pattern recognition,

•Particle ID

 $\cdot \Delta(1/p_T) \sim 1 \times 10^{-4}$  (GeV-1) (TPC alone)

~ 3.10<sup>-5</sup> (GeV-1) (vertex + Si inner tracker + TPC)

#### TPC parameters:

- •200 track points
- $\sigma(r, \phi) \le 100 \ \mu m$  includes stiff 90° tracks ~ 2 m drift •  $\sigma(z) \sim 1 \ mm$
- $\cdot \sigma_{2 \operatorname{track}}(\mathbf{r}, \varphi) \sim 2 \operatorname{mm}$
- •σ<sub>2 track</sub>(z) ~ 5 mm •dE/dx ~ 5%

### ILC detector development in Canada

| TPC         | Carleton,<br>Montreal &<br>Victoria | NSERC<br>supported<br>since 2001 |
|-------------|-------------------------------------|----------------------------------|
| Calorimetry | McGil &<br>Regina                   | Proposed new<br>initiative       |

### Significant progress in ILC TPC R&D with Canada among the leading world groups

CAP Quebec 11/6/2008

#### 3 ILC Detector Concepts - 2 with TPCs

![](_page_24_Figure_1.jpeg)

·LOI (Letters of Intent) by 31 March 2009
·LsOI evaluated by IDAG for a Technical Design Proposal
·The collaborations to produce Engineering Design Reports (EDRs) by 2012

### Limits on achievable TPC resolution

•The physics limit of TPC resolution comes from transverse diffusion:  $\sigma_x^2 \approx \frac{D_{Tr}^2 \cdot z}{V_{eff}} N_{eff}$  = effective electron statistics.

•For best resolution, choose a gas with smallest diffusion in a high B field

![](_page_25_Figure_3.jpeg)

<u>Micro-Pattern Gas Detector</u> <u>development for the ILC TPC</u>

ILC tracker goal:  $\sigma_{r_0} \le 100 \ \mu m$  including stiff 90° 2 m drift tracks

Anode wire/cathode pad TPC resolution limited by ExB effects Negligible ExB effects for Micro Pattern Gas Detectors (MPGD)

TESLA TPC TDR : 2 mm x 6 mm pads (1,500,000 channels) with GEMs or Micromegas LC TPC R&D: 2 mm pads too wide with conventional readout For the GEM ~ 1 mm wide pads (~3,000,000 channels) Even narrower pads would be needed for the Micromegas

The new MPGD readout concept of charge dispersion to achieve good resolution with  $\sim 2 \text{ mm} \times 6 \text{ mm}$  pads.

# <u>ILC challenge: $\sigma_{Tr} \sim 100 \ \mu m$ (all tracks 2 m drift)</u>

Classical anode wire/cathode pad TPC limited by ExB effects Micro Pattern Gas Detectors (MPGD) not limited by ExB effect

![](_page_27_Figure_2.jpeg)

Worldwide R&D to develop MPGD readout for the ILC TPC

CAP Quebec 11/6/2008

#### TPC R&D for the ILC - a world wide effort

| LCTPC/LI                  | <sup>o</sup> Groups (19                                | 9Sept06)             |
|---------------------------|--------------------------------------------------------|----------------------|
| Americas                  | Asia                                                   | Europe               |
| Carleton                  | Tsinghua                                               | LAL Orsay            |
| Montreal                  | CDC:                                                   | IPN Orsay            |
| Victoria                  | Hiroshima                                              | CEA Saclay           |
| Cornell                   | KEK                                                    | Aachen               |
| Indiana                   | Kinki U                                                | Bonn                 |
| LBNL                      | Saga                                                   | DESY                 |
| Purdue (observer)         | Kogakuin                                               | U Hamburg            |
|                           | Tokyo UA&T                                             | Freiburg             |
| 1.5                       | U Tokyo                                                | MPI-Munich           |
| Other grou                | ns U Tsukuba                                           | TU Munich (observer) |
| MIT                       | Minadano SU-IIT                                        | Rostock              |
| MIT (LCRD)                |                                                        | Siegen               |
| Temple/Wayne State (UCLC) |                                                        | NIKHEF               |
| Yale                      |                                                        | Novosibirsk          |
| Karlsruhe                 |                                                        | Lund                 |
| UMM-Krakow                |                                                        | CERN                 |
| Bucharest                 | Tsinghua Nov 2006 LCTPC Design<br>Issues: R&D Planning | y y                  |

#### Finding the avalanche position on a proportional wire

![](_page_29_Figure_1.jpeg)

Generalize charge division to charge dispersion in 2D

Finding the avalanche location on a MPGD resistive anode surface

**Telegraph equation 2-D generalization** 

$$\frac{\partial Q}{\partial t} = \frac{1}{RC} \left[ \frac{\partial^2 Q}{\partial r^2} + \frac{1}{r} \frac{\partial Q}{\partial r} \right]$$

Solution for charge density in 2-D

$$Q(r,t) = \frac{RC}{2t} e^{\frac{-r^2 RC}{4t}}$$

### Charge dispersion in a MPGD with a resistive anode

•Modified GEM anode with a high resistivity film bonded to a readout plane with an insulating spacer.

•2-dimensional continuous RC network defined by material properties & geometry.

•Point charge at r = 0 & t = 0 disperses with time.

•Time dependent anode charge density sampled by readout pads. Equation for surface charge density function on the 2-dim. continuous RC network:

$$\frac{\partial \rho}{\partial t} = \frac{1}{RC} \left[ \frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} \right]$$
$$\Rightarrow \rho(r,t) = \frac{RC}{2t} e^{\frac{-r^2 RC}{4t}}$$

![](_page_30_Figure_6.jpeg)

M.S.Dixit et.al., Nucl. Instrum. Methods A518 (2004) 721.

CAP Quebec 11/6/2008

### Simulating the charge dispersion phenomenon

M.S.Dixit and A. Rankin, Nucl. Instrum. Methods A566 (2006) 281.

- •The charge dispersion equation describe the time evolution of a point like charge deposited on the MPGD resistive anode at t = 0.
- •For improved understanding & to compare to experiment, one must include the effects of:
  - •Longitudinal & transverse diffusion in the gas.
  - •Intrinsic rise time  $T_{rise}$  of the detector charge pulse.
  - •The effect of preamplifier rise and fall times  $t_r \& t_{f}$ .
  - •And for particle tracks, the effects of primary ionization clustering.

### Charge dispersion prototype tests

- •15 cm drift length
- •GEMs/Micromegas
- Detailed simulation
- Cosmic tests B = 0
- •Beam tests
- High field cosmic
   tests

![](_page_32_Picture_7.jpeg)

![](_page_33_Figure_0.jpeg)

#### Centre pulse used for normalization - no other free parameters.

CAP Quebec 11/6/2008

## Transverse resolution (B=0) - Cosmic Rays

### <u>Ar+10%CO<sub>2</sub></u>

![](_page_34_Figure_2.jpeg)

Compared to conventional readout, charge dispersion gives better resolution for the GEM and the Micromegas.

CAP Quebec 11/6/2008

#### KEK beam test at 1 Tesla Canadian/French & Japan/German TPCs

![](_page_35_Figure_1.jpeg)

•4 GeV/c hadrons (mostlyπs)
•0.5 & 1 GeV/c electrons
•Super conducting 1.2 T magnet without return yoke
•Inner diameter : 850 mm
•Effective length: 1 m

![](_page_35_Picture_3.jpeg)

Canadian TPC in the beam outside the magnet

CAP Quebec 11/6/2008

<u>Transverse spatial resolution Ar+5%iC4H10</u> <u>E=70V/cm D<sub>Tr</sub> = 125  $\mu$ m/ $\sqrt{cm}$  (Magboltz) @ B= 1T Micromegas TPC 2 × 6 mm<sup>2</sup> pads - Charge dispersion readout</u>

![](_page_36_Figure_1.jpeg)

CAP Quebec 11/6/2008

<u>Extrapolation confirmed 5 T cosmic tests at DESY</u> COSMo (Carleton, Orsay, Saclay, Montreal) Micromegas TPC

 $D_{Tr} = 19 \ \mu m / \sqrt{cm}$ , 2 x 6 mm<sup>2</sup> pads 0.2 0.18 0.16 0.16 0.14 0.2 Ar CF4 Iso (95:3:2) B = 5T 0.12 Nov-Dec, 2006 0.1 0.08 0.06 0.04 0.02 <u>የ</u> 16 z/cm 2 12 14 6 8 10 M. Dixit et. al, NIM A 581, 254 (2007)

![](_page_37_Picture_2.jpeg)

~ 50  $\mu$ m av. resolution over 15 cm (diffusion negligible) 100  $\mu$ m over 2 meters looks within reach!

CAP Quebec 11/6/2008

#### <u>GEM-TPC cosmic tests at DESY done by Victoria Group</u> <u>Transverse resolution vs. B field</u>

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

Good resolution achieved for tracks separated by > 1.5 x pad width

a

#### Preparing the TPC for ILC

•A formal Linear Collider TPC (LC-TPC) collaboration recently formed

•Goal - construct a 1 meter prototype & comprehensive beam tests in a 4 T magnet in a beam with ILC like time structure with <u>realistic electronics</u> by 2010(12)

•Two possible readout options being developed

•1) GEM with 1 mm pads

·2) Micromegas with ~ 2 mm pads with charge dispersion readout

### 1 m Large Prototype TPC for tests at DESY (2007-2010) 7 panels GEMs with 1 mm pads & Micromegas with 2 mm wide pads Up to 10,000 instrumented channels

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

TPC endplate: 7 modules with Micromegas with charge dispersion readout.

# To be built by Canada and France

Large prototype in the 1 T magnet PCMAG. The 6 GeV electron beam will enter through the magnet coil transverse to the drift direction. The magnet has no iron.

CAP Quebec 11/6/2008

![](_page_42_Picture_0.jpeg)

![](_page_42_Picture_1.jpeg)

# **GDE** Timeline

- TDPI: 2010
  - Technical risk reduction
  - Cost risk reduction
  - Global design
- TDP II : 2012
  - RD unit test (KEK)
  - Complete necessary technical designs (exceptions)
  - Project plan by consensus
- Detailed engineering will follow before construction

![](_page_43_Picture_0.jpeg)

# **Detector Timeline**

![](_page_43_Picture_2.jpeg)

- Detector Design Phase I : 2010
  - Focus on critical R&Ds
  - LOI validation by IDAG (March 31 09 LOI deadline)
  - Update physics performance
  - MDI
- Detector Design Phase II : 2012
  - React to LHC results
  - Confirm physics performance
  - Complete necessary R&Ds
  - Complete technical designs
  - Cost (reliable)

### Summary

- •The physics case for the ILC is compelling
- •Expect to gain momentum after LHC results
- •At 5 T, an unprecedented flat ~ 50  $\mu m$  resolution has been demonstrated with 2 x 6 mm² readout pads for drift distances up to 15 cm. The ILC-TPC resolution goal ~100  $\mu m$  for all tracks up to 2 m drift appears feasible (Carleton & UVIC).
- •The innovative Canadian MPGD readout concept of charge dispersion a serious candidate for the ILC TPC readout.
- •New calorimetry initiative in Canada (Regina & McGill)
- •Canadian responsibilities for large 1 m prototype tests to 2010
  - •Construct seven large Micromegas panels with charge dispersion shared with France (Carleton & Montreal)
  - Calibration (Victoria)
  - Electronics development (Carleton & Montreal)