Measurement of MPGD-TPC resolution with charge dispersion in a beam test in a magnet

Vancouver Linear Collider Workshop 19-22 July 2006

Madhu Dixit TRIUMF/ Carleton University

Canada	a
--------	---

France

Japan

Germany

A.Bellerive, K.Boudjemline, J.Miyamato, E.Neuheimer, E.Rollin, K.Sachs, Y.Shin & S. Turnbull J.-P. Martin

D.Burke, P.Colas, A.Giganon & I.Giomataris V.Lepeltier & Th.Zerguerras

R. Settles

Carleton University

<u>University of Montreal</u> <u>DAPNIA CEA Saclay</u> <u>LAL Orsay</u> MPI (Munich)

H.Kuroiwa & T.Takahashi K.Fujii, M.Kobayashi, T.Matsuda & H.Yamaoka Y.Kato T.Watanabe T.Araki, H.Fujishima, T.Higashi, , K.Kodomatsu, A.Sugiyama, T.Yamamoto & Y.Tanaka A.Yamaguchi M.Habu, S.Matsushita, K.Nakamura & O.Nito Hiroshima University KEK/IPNS Kinnki University Kogakuin University Saga University

<u>Tsukuba University</u> <u>Tokyo University of</u> <u>Agriculture & Technology</u>

Motivation & overview

- ILC tracker goal ∆(1/p_T) ≤ 5.10⁻⁵ (GeV/c)⁻¹
 => MPGD-TPC ∆(1/p_T) ≤ 1.5 x 10⁻⁴ (GeV/c)⁻¹
- TDR TPC: 200 pads; $\sigma_{Tr} \sim 100 \ \mu m$ ($\approx 2 \ m \ drift$), pad size 2 x 6 mm² => Total TPC pad count ~1.5 x 10⁶
- R&D shows 2 mm too wide for 100 μm resolution with normal readout. Ways to improve the MPGD-TPC resolution:
- Under consideration narrower 1 mm x 6 mm pads (3 x 10⁶ total). R&D issues: High density electronics, larger heat load, TPC endcap mass etc.
- Alternative: Disperse avalanche charge to improve resolution for 2 mm wide pads. Development of a TPC readout with charge dispersion in MPGDs with a resistive anode.
 - > Charge dispersion demonstrated in cosmic ray TPC tests with no magnet.
- B = 1 T 4 GeV/c beam test at KEK PS in October 2005. Two TPCs: MP TPC (MPI Munich, Saclay, SAGA, KEK) with GEMs & Micromegas & Canadian TPC with Saclay Micromegas.
 - Update of results reported at LCWS 2006 Bangalore.
 - Progress in simulation.
 - Summary & outlook.

Charge dispersion in a MPGD with a resistive anode

- •Modified MPGD anode with a high resistivity film bonded to a readout plane with an insulating spacer.
- •2-dimensional continuous RC network defined by material properties & geometry.
- •Point charge at r = 0 & t = 0 disperses with time.
- •Time dependent anode charge density sampled by readout pads.

Equation for surface charge density function on the 2-dim. continuous RC network:

$$\frac{\partial \rho}{\partial t} = \frac{1}{RC} \left[\frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} \right]$$
$$\Rightarrow \rho(r,t) = \frac{RC}{2t} e^{\frac{-r^2 RC}{4t}}$$

VLCW06

3

Micromegas with a resistive anode for the charge dispersion readout

The two beam test TPCs

- Micromegas 10 x10 cm²
- Drift distance: 16 cm
- 126 pads, 2 x 6 mm² each in 7 rows

-ALEPH preamps + 200 MHz FADCs rebinned to 25 MHz

- -Micromegas & GEMs 10 x10 cm²
- -Drift distance 25.9 cm
- 384 pads 2.3 x 6.3 mm² each in 16 rows
- -ALEPH preamps + 11 MHz Aleph Time Projection Digitizers

KEK PS π2 test beam set up with Carleton & MP TPCs Beam data taken both in & outside the magnet for the two TPCs

•4 GeV/c hadrons (mostly πs)
•0.5 & 1 GeV/c electrons
•Super conducting 1.2 T magnet without return yoke
•Inner diameter : 850 mm
•Effective length: 1 m

Carleton TPC in the beam outside the magnet

Track display - Ar+5%iC4H10Micromegas 2 x 6 mm² pads B = 1 T

Z_{drift} = 15.3 cm

The pad response function (PRF) - a measure of pad signal as a function of track position

•PRF determined empirically from self consistency of track data. •PRF parameterized in terms of FWHM Γ & base width Δ $PRF[x,\Gamma(z),\Delta,a,b] = \frac{1+a_2x^2+a_4x^4}{1+b_2x^2+b_4x^4}$

M. Dixit

Track fit using the PRF Track at: $x_{track} = x_0 + tan(\phi) y_{row}$ $\chi^2 = \sum_{rows i = pads} \left(\frac{A_i - PRF_i}{\partial A_i} \right)^2$ Determine x_0 & ϕ by minimizing

 χ^2 for the entire event

- Definitions:
 - residual: x_{row}-x_{track}
 - bias: mean of x_{row} - $x_{track} = f(x_{track})$
 - resolution: σ of the residuals

6 mm

x

2 mm

Bias for central rows / Ar+5%iC4H10B = 1T

Transverse spatial resolution Ar+5%iC4H10 $E=70V/cm D_{Tr} = 125 \mu m/\sqrt{cm} (Magboltz) @ B= 1T$ Micromegas+Carleton TPC 2 x 6 mm² pads

Is extrapolating high-gain 0° Ar/C₄H₁₀ data to ILC-TPC operating conditions credible? Effect of track angles & gain on resolution

Gain for Ar/C4H10 was ~ 2 times larger than for ArCO2 Significantly worse σ_0 for 10° tracks for Ar/C4H10 than 0°

Track angle effect is mostly due to clustering

2 mm
-For angled tracks, y centroid wanders due to ionization clustering.
-y centroid movement affects x centroid position.

To the track angle effect, one must $~\text{add}~\sigma_{\text{0}}\approx$ 50 μm for noise & systematics

Re-analyze Ar/CO₂ 90/10 cosmic ray data for track angles

2 x 6 mm² pads, D_{Tr} =223 μ m/ \sqrt{cm} B = 0 T

For $|\phi| < 1.5^{\circ} \sigma_0 = 50 \ \mu m!$ Gain ~ 2 times lower than Ar/C₄H₁₀ Track angle effect similar to that observed for Ar/C₄H₁₀

frange
 track

pad plane

14

VLCW06

M. Dixit

Centre pad amplitude used for normalization - no other free parameters.

VLCW06

Micromegas -TPC track PRF (histogram) versus PRF determined experimentally (====== lines) $Ar/CO_2 90/10 V_{drift} = 22.8 \ \mu m/ns D_{Tr} = 223 \ \mu m/\sqrt{cm} D_1 = 263 \ \mu m/\sqrt{cm}$

Resistivity = 1000 k Ω / \Box , Dielectric spacer thickness = 50 μ m, K = 4 Intrinsic Micromegas pulse risetime = 50 ns Aleph preamp rise time = 37 ns, Fall time = 1980 ns

Summary & outlook

- Successful demonstration of charge dispersion readout concept for the MPGD-TPC in a magnetic field in a beam test.
- $\sigma_0 \sim 50 \ \mu m$ in Ar/C₄H₁₀ 95/5 with 2x6 mm² pads at B=1 T for 4 GeV/c pions.
- No loss of performance for Ar/CO₂ 90/10 for cosmic rays at B = 0 T at lower gain.
- Track angle effect ~ 20 μ m for 100 mR tracks possible with cathode segmentation in y as 2 mm wide strips.
- Extrapolation of Ar/C_4H_{10} results to ILC-TPC should be valid.
- Charge dispersion works with GEMs and Micromegas both. The ILC-TPC resolution goal of ~100 µm with 2 mm x 6 mm pads for all tracks appears feasible.
- Charge dispersion phenomena well understood. Stand alone simulation will be incorporated into GEANT4 framework.
- 4 T cosmic tests at DESY this year. Two track resolution tests at Fermilab planned for next year.

Additional slides

When there is no ExB effect, the wire/pad TPC resolution approaches the diffusion limit for the Aleph TPC

Average Aleph resolution ~ 150 μ m. Resolution ~ 100 μ m even for 2 m drift. Limit from diffusion σ (10 cm drift) ~ 15 μ m; σ (2 m drift) ~ 60 μ m.

Cosmic ray resolution of a MPGD-TPC

•15 cm drift length with GEM or Micromegas readout

•B=0

•Ar: $CO_2/90:10$ chosen to simulate low transverse diffusion in a magnetic field.

•Aleph charge preamps. $\tau_{Rise} = 40 \text{ ns}, \tau_{Fall} = 2 \mu \text{s}.$ •200 MHz FADCs rebinned to digitization effectively at 25 MHz. •60 tracking pads (2 x 6 mm²)

+ 2 trigger pads ($24 \times 6 \text{ mm}^2$).

The GEM-TPC resolution was first measured with conventional direct charge TPC readout.

The resolution was next measured with a charge dispersion resistive anode readout with a double-GEM & with a Micromegas endcap.

Measured TPC transverse resolution for Ar:CO₂

(90:10)

Compared to conventional readout, resistive readout gives better resolution for the GEM and the Micromegas readout. The z dependence follows the expectations from transverse diffusion & electron statistics.