Charge Dispersion in Micro Pattern Gas Detectors with a Resistive Anode

Madhu DixitTRIUMF & Carleton University

Special focus workshop on New Developments in Micro-Pattern Gas Detectors2007 IEEE Nuclear Science Symposium & Medical Imaging Conference, Hawaii

Madhu Dixit

Resolution of a gaseous charged particle counter with pad/strip readout

1) Primary ionizing interactions (Poisson Distribution)

P(n) = <N> ne-<N>/n! (<N> = average)

2) Number of electrons per cluster fluctuates (cluster size distribution) Fischle et al (A301, 202 (1991)

Madhu Dixit

MPGD resolution with conventional readout Micromegas example

Electron drift distance from ~ mm to meters

4) Gas avalanche (Gain fluctuations)

5) Readout (pad size depends on application)

Resolution from centre of gravity

$$
\sigma_x^2 \approx \sigma_0^2 + \frac{1}{N_{\text{eff}}} \left[D_{\text{Tr}}^2 z + w^2 / 12 \right]
$$

Neff is less than <N> (average number of electrons)= 1/<1/N>Neff ~20 to 30% of <N>

Pad width limiting factor for a MPGD-TPC in a high B fieldWire/pad TPC not limited by pad width but by ExB effects

Direct signal on theFor small diffusion, less precise centroid for wide padsMPGD anode pad

 Induced cathode signal determined by geometry Accurate centroid determination possible with wide pads

$$
\sigma_x^2 \approx \sigma_0^2 + \frac{1}{N_{\text{eff}}} \left[D_{\text{Tr}}^2 z + w^2 / 12 \right] \qquad \qquad \sigma_x^2 \approx \sigma
$$

$$
\sigma_x^2 \approx \sigma_0^2 + \frac{D_{Tr}^2 \cdot z}{N_{eff}}
$$

Madhu Dixit

MPGDs in charged particle tracking applications

•For standard tracking applications, to achieve good resolution, MPGDs require high density sub-mm pad readout structure: σ_{x} ≈ w/ √(12 N*eff*)

•GEMs & Micromegas (e.g.COMPASS)

•w = 400 μm & $\sigma_{\sf x}$ \approx 70 μm \Rightarrow N_{eff} \approx 3

dout channe •Number of readout channels manageable

 •Several large volume MPGD-TPCs proposed for HEP and for rare event detection; e.g.

•ILC TPC: 1,500,000 channels (2 mm x 6 mm pads)

•At B = 4 Tesla; **^DTr~ 25** µ**m/**√**cm;** σ**(z=2m) ~ 350** µ**^m&** signal confined to 1 or 2 pads

•T2K TPC: 100,000 channels (7 mm x 9 mm pads)

The large TPC challenge:How to reduce complexity and achieve good resolution at an affordable costs

 •Unprecendented resolution challenge for the ILC TPC. To measure $\,$ 200 track points; σ (r, ϕ) ~ 100 μ m at 2 m $\,$ drift including stiff 90 degree tracks.

•For the GEM, large transverse diffusion in the transfer & induction gaps provides a natural mechanism to disperse the charge and facilitate centroid determination.

•**GEMs with standard readout will need ~ 1 mm wide pads to achieve ~ 100** µ**m resolution goal with ~3,000,000 readout channels**

 •With standard readout, even narrower pads would beneeded for the Micromegas

How to get good MPGD resolution with wide pads?

•Find a mechanism similar to proportional wire induced cathode pad signals

•Charge dispersion - a new geometrical pad signal induction mechanism for the MPGD readout that makes position determination insensitive to pad width.

•Development of a new concept of charge dispersion in a MPGD with a resistive anode The technique works for both the GEM and the **Micromegas**

Position sensing from charge dispersion in a MPGD with a resistive anode

Position sensing on a anode proportional wire from charge division

Telegraph equation (1-D):

Deposit point charge at t=0

$$
\frac{L}{R}\frac{\partial^2 Q}{\partial t^2} + \frac{\partial Q}{\partial t} = \frac{1}{RC}\frac{\partial^2 Q}{\partial x^2}
$$

Solution for charge density $(L \sim 0)$

$$
Q(x,t) = \sqrt{\frac{RC}{4\pi t}} e^{-\frac{x^2 RC}{4t}}
$$

Generalize 1 D wire charge division to a 2 D RC network

Charge dispersion readout concept test for GEM**Resistive Anode**

GEM Setup for Resistive Anode Tests

Equivalent circuit for currents in a MPGD with an intermediate resistive anode

Current generators

Observation of a 6 keV ⁵⁵Fe x-ray photon event in a double GEM test cell with a resistive anode

Collimator size \sim 1 mm; signal detected by \sim 7 anodes (2 mm width)

GEM proof of concept tests with charge dispersion

M.S.Dixit et.al., Nucl. Instrum. Methods **A518** *(2004) 721.*

Madhu Dixit

Point resolution for GEM Charge dispersion readout (Ar+10%CO2)**Collimated ~ 4.5 keV x rays, Spot size ~ 50** µ**m**

 \bullet GEM resolution $~\sim$ 70 μ m.

•Similar resolution measured for a Micromegas with a resistive anode readout using 2 mm x 6 mm pads

Charge dispersion in a MPGD with a resistive anode

- •Modified MPGD anode with a high resistivity film bonded to a readout plane with an insulating spacer.
- •2-dimensional continuous RC network defined by material
properties & geometry. •Point charge at *r = 0 & t = 0*
- disperses with time.
- •Time dependent anode charge
density sampled by readout pads.
- Equation for surface charge density function on the 2-dim. continuous RC network:

 $\partial^2 \rho$

 $\frac{1}{\partial r^2}$ +

1

 $\partial \rho$

∂*r*

r

the contract of the contract of the contract of

 $\Rightarrow \rho(r,t) = \frac{RC}{2t}e^{\frac{-r^2RC}{4t}}$

 $\begin{bmatrix} \hat{\epsilon} \ -\hat{\epsilon} \end{bmatrix}$

M.S.Dixit et al, Nucl. Inst. Meth A518, 721 (2004)

 $\partial \rho$

=

1

RC

∂*t*

⇒

Micromegas with a resistive readout

A resistive anode MPGD readout

Madhu Dixit

Simulating the charge dispersion phenomenona

M.S.Dixit and A. Rankin, Nucl. Instrum. Methods **A566** *(2006) 281.*

- •The charge dispersion equation describe the time evolution of a point like charge deposited on the MPGD resistive anode at *t = 0*.
- •To compare to experiment, one needs to include theeffects of:
	- •Longitudinal & transverse diffusion in the gas.
	- •Intrinsic rise time *Trise* of the detector charge pulse.
	- •The effect of preamplifier rise and fall times *tr* & *tf*.
	- •And for particle tracks, the effects of primary ionizationclustering.

Charge dispersion signal for GEM - Collimated x-ray spot Simulation versus measurement (Ar+10%CO2) $(2 \times 6 \text{ mm}^2 \text{ pads})$ Collimated $\sim 50 \text{ µm}$ 4.5 keV x-ray spot on pad centre.

Simulated primary pulse is normalized to the data.

Primary pulse normalization used for the simulated secondary pulse

Learning to track with charge dispersion Cosmic ray tests – no magnetic field

•15 cm drift length with GEM or Micromegas readout

 \cdot B=0

•**Ar+10% CO2 chosen to simulate low transverse diffusion in a magnetic field.**

•Aleph charge preamps. τ_{Rise} = 40 ns, τ_{Fall} = 2 μs. •60 tracking pads $(2 \times 6 \text{ mm}^2)$ $+ 2$ trigger pads (24 x 6 mm²).

The GEM-TPC resolution was first measured with conventional direct charge TPC readout.

The resolution was next measured with a charge dispersion resistive anode readout with a double-GEM & with a Micromegas endcap.

GEM TPC charge dispersion simulation (B=0) Cosmic ray track, Z = 67 mm Ar+10%CO2

Centre pulse used for simulation normalization - no other free parameters.

Madhu Dixit

Charge dispersion pulses & pad response function (PRF)

•Non-standard variable pulse shape; both the rise time & pulse amplitude depend on track position*.*

- •The PRF is a measure of signal size as a function of track position relative to the pad.
- •We use pulse shape information to optimize the PRF.
- •The PRF can, in principle, be determined from simulation.
- •However, existing fabrication techniques introduce a bias in the measured position.
- •The position bias is geometrical and reproducible. The bias is corrected by calibration.
- •PRF and bias determined empirically using a subset of data.

GEM & Micromegas track Pad Response Functions Ar+10%CO22x6 mm2 pads

70 I DU LI OI The pad response function (PRF) amplitude for longer drift distances is lower due to Z dependent normalization*.*

Micromegas PRF is narrower due to the use of higher resistivity anode & smaller diffusion than GEM after avalanche gain

Track PRFs with GEM & Micromegas readout

- •The PRFs are not Gaussian.
- •The PRF depends on track position relative to the pad.
- • $PRF = PRF(x,z)$

•PRF can be characterized by FWHM ^Γ(z) & base width $\Delta(z)$.

•PRFs determined from the data parameterized by a ratio of two symmetric 4th order polynomials.

$$
PRF[x, \Gamma(z), \Delta(z), a, b] = \frac{(1 + a_2 x^2 + a_4 x^4)}{(1 + b_2 x^2 + b_4 x^4)}
$$

 $\mathsf{a}_2\,\mathsf{a}_4\,\mathsf{b}_2$ and Δ & two scale parameters a & b. ₂ & b 4 $_4$ can be written down in terms of Γ

Madhu Dixit

Track fit using the the PRF

$$
\text{Track at: } x_{\text{track}} = x_0 + \tan(\phi) \ y_{\text{row}}
$$
\n
$$
\chi^2 = \sum_{\text{rows } i = \text{pads}} \left(\frac{A_i - PRF_i}{\partial A_i} \right)^2
$$

Determine $x_o \& \phi$ *by minimizing* χ^2 *for the entire event*

Definitions:

 $\boldsymbol{\chi}$

- residual:
$$
x_{row}
$$
- x_{track}

- *bias: mean of xrow-xtrack = f(xtrack)*
- *resolution: standard deviation of residuals*

B=0 Cosmic Ray Transverse Resolution

Ar+10%CO2

R.K.Carnegie et.al., K. Boudjemline et.al., A. Bellerive et al, LCWS 2005, Stanford NIM A538 (2005) 372 NIMA 574, 22 (2007) $\begin{aligned} \text{min} \quad & \text{if } \\ \end{aligned}$ resolution/mm **GEM** with direct GEM with charge Micromegas with charge 0.2 0.2 charge readout dispersion readout dispersion readout colution 0.15 0.15 0.1 0.1 0.1 61 $\sigma_{\rm s} = 97$ am , $C_{\rm m} = 0.27$ $\sigma_{\rm s} = 77$ junt , $C_{\rm m} = 0.23$ $\sigma_s = 69 \text{ nm}$, C_n = 0.24 0.05 0.05 0.05 $C_{\rm m} = 0.23$ $C_{\infty} = 0.222$ $C_{\rm m} = 0.222$ Magboltz pred. Magboltz pred. Magboltz pred. n s 10 5 15 5 10 15 10 15 $x/$ cm $x/$ cm $x/$ cm 2 2 + 2 $\sigma_{\raisebox{-0.75pt}{\tiny 0}}$ *z Ne*

Compared to conventional readout, charge dispersion gives better resolution for the GEM and the Micromegas.

First tests in a magnetic field (Oct, 2005)

Micromegas TPC - charge dispersion readout

•**4 GeV/c KEK PS** π**2 hadron test beam** •**Super conducting 1.2 T magnet** •**Inner diameter : 850 mm**•**Effective length: 1 m**

Canada, France, Germany, Japan (Carleton, Montreal, Saclay, Orsay, MPI (Munich), KEK, Kinnki, Kogakuin, Saga, Tsukuba and TUAT)

Madhu Dixit

Pad Response Function / Ar+5%iC4H10 MicromegasTPC 2 x 6 mm2 pads, B = 1 T 30 z regions / 0.5 cm step

Transverse spatial resolution Ar+5%iC4H10 E=70V/cm DTr = 125 µm/√**cm (Magboltz) @ B= 1TMicromegas TPC 2 x 6 mm² pads**

Madhu Dixit

(Carleton-Orsay-Saclay-Montreal) COSMo TPC track display**Tests in the 5 T magnet at DESY** 2 mm x 6 mm padsThe track charge width is negligible compared to the pad width.

A cosmic track with charge dispersion.

Madhu Dixit

5 T cosmic tests with charge dispersion COSMo (Carleton, Orsay, Saclay, Montreal) Micromegas TPCDTr= 19µm/√cm, **2 x 6 mm2 pads**

\sim 50 μ m av. resolution over 15 cm (diffusion negligible)
website

Madhu Dixit

Application to T2K TPC

(from a talk by F.Sánchez (Universitat Autònoma de Barcelona)

But better momentum resolution would be useful:Better background rejection = More channels => \$\$?Can one do it with the presently chosen pad dimensions?

Madhu Dixit

T2K simulation for 8 x 8 mm2 pads Track crosses no pad row or column boundaries<u>Ar+10% CO₂ , v_{Drift} = 28 μm/ns (E = 300 V/cm)</u>

Anode surface resistivity 150 K Ω/\square , dielectric gap = 75 µm, K = 2

Madhu Dixit

MPGD Workshop - IEEE Hawaii 2007 32

Micromegas TPC with resistive readout - Simulated PR F

 8 x 8 mm 2 pads, Ar+10% CO₂@ 300 V/cm, 175 mm drift distance

MPGD Workshop - IEEE Hawaii 2007 33

Summary

- Traditional MPGD-TPC has difficulty achieving good resolution with wide pads
- With charge dispersion, the charge can be dispersed in a controlled way such that wide pads can be used without sacrificing resolution. One can achieve excellent resolutionwith wide pads both for the GEM and the Micromegas.
- It will enable large TPCs like the ILC TPC to achieve good resolution with a smaller number of readout channels, keep the endplate mass low and also the electronics heat loads manageable.
- For low rate large TPCs like T2K, it appears feasible to achieve better resolution with existing number of channels with the charge dispersion readout.
- Good understanding of charge dispersion. The simulation can be used to optimize charge dispersion TPC readout.