1st Tracking Experience for MPGD TPC readout with Charge Dispersion on a Resistive Anode

Introduction

Transverse diffusion sets ultimate limit on the resolution of a TPC

- Operating TPCs have not reached this limit: wire/pad TPC: E x B systematic effects MPGD TPC have the potential, but not proven yet
- Not enough charge sharing between pads for small transverse diffusion limits resolution; centroid calculation is not fully effective.

Solution:

- ➤ (very) small pads ⇒ many readout channels
- spread charge/signal after gain: GEM can be operated with large diffusion in gaps. Published: *R.K.Carnegie et.al.*, LCWS'02, physics/0402054 (sub. to NIM.)
- resistive anode: concept and 1st tests are published: M.S.Dixit et.al., NIM A518 (2004) 721 and presented previously. New results for track reconstruction and resolution.

1st Test of Principle

Published: *M.S.Dixit et.al.*, NIM A518 (2004) 721

Presented previously: *R.K.Carnegie et.al.*, ALCPG (SLAC) 1/04 IEEE (Portland) 10/03

Point resolution
 50 μm collimated
 X-ray source

- TPC test cell, 5mm drift distance, gas: Ar:CO₂ (90:10) 60 pads, 2 x 6 mm²
- Readout: ALEPH TPC preamplifiers
 8 channel digital scope

Concept of Charge Dispersion

Amplification: GEM or microMegas

- charge is collected on resistive foil glued to PCB, glue = insulating spacer
- 2dim RC network defined by geometry charge spreads on foil surface
- capacitively coupled signals observed on PCB readout pads below

2dim telegraph equation for charge density q:

$$\frac{\partial q}{\partial t} = \frac{1}{RC} \left[\frac{\partial^2 q}{\partial x^2} + \frac{1}{x} \frac{\partial q}{\partial x} \right]$$

$$q(x,t) = \frac{RC}{2t} e^{\frac{-x^2RC}{4t}}$$

b point source

Charge Dispersion Signals

Collimated X-ray source

Signals from charge dispersion ar observed on neighboring pads

Peak at later time (~150 ns) different pulse shape

Simulation of signals available (analytical calculation)

describes pulse shapes / PRF

Induced signal studied previously: MPGD '99 (Orsay), LCWS '00

Proof of Principle

🚾 🚽 Cosmic-Ray Track Study

Track reconstruction with charge dispersion on resistive anode. Study resolution.

GEM-TPC Setup:

15 cm drift distance
cosmic ray particles
gas: Ar:CO₂ (90:10)
60 pads, 2 x 6 mm²
ALEPH TPC preamplifiers
custom FADC, 200 MHz
University of Montreal

Event with Charge Dispersion

Tracking with charge dispersion

Re-learn how to do signal / track reconstruction:

- \succ different pulse shapes \rightarrow what is the amplitude?
- PRF not known a priori.
- ➤ cross-talk between rows: dispersion is 2D → seen on next row can in principle be used to reduce track-angle effect

Learn from experience with point resolution but situation is different:

- Point of charge \u2272 line of charge (cosmic-ray track)
- No external knowledge of position
 Is use internal consistency of 5 rows

Pad Response Function

Track Fit

Direct charge	Charge dispersion			
Maximize probability	Minimize χ ²			
$\prod_{i=pads} PRF_i^{N_i} N_i: electrons on pad i$	$\sum_{i=pads} \left(\frac{A_i - PRF_i}{\delta A_i} \right)^2$			
PRF has to be normalized accordingly				
Determine track parameters x_{0} , ϕ $x_{track} = x_0 + y \tan(\phi)$ Position x_{row} in row: track fit to 1 ro other track-parameters fixe	$\begin{array}{c} \text{Residuals ; z < 1cm} \\ 80 \\ & \chi^2/\text{ndf} \\ & 34.91 \\ & 40 \\ \end{array}$			
Residuals: $R = x_{row} - x_{track}$ Bias: mean of residuals Resolution: sigma of residuals Study for tracks with $ \phi < 5^{\circ}$.	20 0 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

Is there a Bias?

Dir	ect charge		Charge dispersion	
Bias pad width	across pad > 3 * charge	if e width	Global bias due to <i>RC</i> inhomogenit time independent → can be corrected	зу
edge $\begin{bmatrix} 0.1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	center bias act the product of the p	edge	$\begin{array}{c c} & 0.15 \\ & 0.15 \\ & 0.1 \\ & 0.05 \\ & 0 \\ & -0.05 \\ & -0.1 \\ & -6 \\ & -4 \\ & -2 \\ & 0 \\ $	
No g	lobal bias		No bias modulo pad size	

Resolution as Function of z

Resolution Comparison

Direct charge	Charge dispersion	
For small transverse diffusion (small z, B field) 2 mm wide pads don't give the best possible resolution.	Spreads signal in controlled way (geometry, not diffusion). Width is tunable, adjust <i>RC</i> . Works with GEM AND microMegas.	
Not enough charge sharing.	Need good quality of	
Don't reach diffusion limit with our setup/analysis.	resistive foil and lamination to ensure homogenous <i>RC</i> . Remaining systematic effects can be corrected.	
Obtained resolution @ $z=0$: $\sigma_0 = 93 \ \mu m$ 50% worse than diffusion limit	Obtained resolution @ $z=0: \sigma_0 = 80 \mu m$ close to diffusion limit for $z>0$	

Conclusion / Plans

- Concept of charge dispersion on a resistive anode successfully tested with point charge and cosmic-ray tracks.
- Global bias (~100 μ m), can be corrected.
- Charge dispersion improves resolution compared to normal readout. Resolution at z=0 of 80 μ m, for z>0 close to diffusion limit; with 2 mm wide pads, Ar:CO₂ (90:10), up to 15 cm drift distance.
- Will repeat this study with microMegas:
- Point resolution study \Rightarrow uniformity / consistency. Track resolution with microMegas and charge dispersion. We can use ArCO₂ to fake low diffusion from magnetic field.
- Further tests: magnetic field, test beam, ... Open questions: what kind of electronics can be used, ... (e.g. inexpensive 20 MHz electronics)

This is a promising start but not the end of the story