

GEM TPC R&D in Canada

LCWS **200**S Jeju Island, Korea 27 August 2002

Kirsten Sachs Carleton University

B.Carnegie, M.Dixit, F.Hortop, D.Karlen, J.-P.Matrin, H.Mes, E.Neuheimer, A.Rankin, K.Sachs, V.Strickland

2 Main Points of Interest

Test-cell:

- improve space-point resolution
- > spread signal over several readout pads
- charge dispersion on resistive foil
- match pad response function to diffusion

- track resolution
- hit efficiencies
- > multiplexing
- > Compare gas: P10 ↔ Ar CO_2

Space-Point Resolution

Problem:

- ⇒ signals on adjacent pads too small
- \Rightarrow poor centroid calculation

Ideas for solutions:

spread signal over several (2-3) readout pads

- complex shapes, e.g. chevrons
- small pads + multiplexing
- increase size of charge cloud
- \checkmark increase size of signal

Resistive Anode Studies

Charge Dispersion

Idea: charge spread on resistive foil signal distributed over several pads

Telegraph equation:

Q: charge density ; t: time ; x: coordinate C: capacity ; L: inductivity ; R: resistivity

for simulation: + finite size of charge cloud + rise and fall time effects

Width of Signal

Pad Response Function

Simulation

optimize spread according to dispersion in gas

secondary pulses: peak delayed peak less pronounced

time constant for secondary pulses is longer for strips (1 dim) compared to rectangular/hex pads (2 dim)

Smaller Signal Spread

Smaller Signal Spread

- systematic measurements with strips, hexagonal and rectangular pads
- determine pad response function
- determine resolution
- verify uniformity of signal spread
- compare to simulation problem: measurement of resistivity of foil

apply to tracking studies

Iong term:

TPC

15 cm drift distance cosmic ray particles gas: Ar CO₂ ; P10 ALEPH preamplifier custom FADC, 200 MHz University of Montreal

pad layout:

- > old: 32 pads (2.5 x 5 mm) in 5 rows
- > new: 174 pads (~2.5 x 5 mm) multiplexed + trigger + veto

studies:

- > gain stability
- track resolution
- ➤ efficiency

TPC Event

Gain Stability P10

mean: stable over 140 hours

Gain Stability Ar CO₂

mean: stable over 550 hours

3 parameter fit: x_0 (offset), ϕ (angle), σ (spread)

assume uniform line of charge with Gaussian spread σ integral over pad ⇔ expected charge compare to observed charge fractions in each row

neglected:

fluctuations along the track
⇒ track angle effect
for large

Track x_o Resolution

Kirsten Sachs / Carleton University

Diffusion P10

width of charge, σ , increases with drift distance d

diffusion in Ar CO_2 smaller than in P10

Ionization Effect Ar CO₂

New Pad Layout

Track Reconstruction

In construction:

cylindrical, outer diameter 22.2 cm, drift length 30 cm ⇒ fits TRIUMF and DESY magnets

readout using STAR-TPC electronics (256 channels)

A New TPC (#2)

copper HV backplane fieldcage: brass rings

Space-point resolution:

- measurements from two setups with different charge dispersion
- simulation to optimize parameters

Tracking studies:

- \succ results on gain stability, x_0 resolution
- new pad layout with multiplexing
- new TPC being built

New web page under construction:

http://www.physics.carleton.ca/~gmd/