

TPC Readout R&D in Canada

Santa Cruz Linear Collider Retreat, June 27-29, 2002

R. Carnegie, M. Dixit, F. Hartop, H. Mes, E. Neuheimer,

A. Rankin, K. Sachs, V. Strickland – Carleton University

J.-P. Martin – University of Montreal

D. Karlen – Carleton / Victoria

TPC Readout R&D in Canada

- * Past work on GEM based readout:
 - test cell for space point resolution studies with collimated x-ray source
 - 15 cm drift length TPC for tracking resolution studies
- * New developments (since Chicago):
 - charge dispersion
 - TPC simulation package
 - new multiplexed TPC readout structure
 - new TPC under construction for magnetic field tests

Charge dispersion with resistive anodes

- *For some TPC readout designs, the transverse size of charge clouds can be significantly smaller than the pad size
 - would result in degraded resolution
- **★One possible solution is to spread out the signals over wider area using a resistive anode**
 - measurements are underway to determine if this is a viable solution

Resistive anode test setup

Observed signals

2.5 mm pitch strips

2D analog of telegraph equation

Consider a GEM with a resistive anode. Anode collects avalanche charge. Any localized charge signal will spread radially with time. The 2-D Telegraph equation:

$$\frac{\partial Q}{\partial t} = \frac{1}{RC} \left[\frac{\partial^2 Q}{\partial r^2} + \frac{1}{r} \frac{\partial Q}{\partial r} \right] \qquad \begin{array}{c} 0 < r < r \\ C = \text{capac} \\ R = \text{surfa} \end{array}$$

$$= k^2 \left[\frac{\partial^2 Q}{\partial r^2} + \frac{1}{r} \frac{\partial Q}{\partial r} \right] \qquad \begin{array}{c} L \sim 0 \\ k^2 = 1/RC \end{array}$$

- Boundary conditions: Q = f(r) at t = 0Q = 0 for r = a; $0 \le t \le \infty$
- Solution for initial point charge: Take limit $a \Rightarrow \infty$ for $Q = \delta(r)$ at t = 0 with $\int \delta(r)dr = 1$ is given by: $Q(r,t) = \frac{1}{2k^2t}e^{-[r^2/(4k^2t)]}$

Incorporate finite size of initial charge cluster & amplifier rise & fall time effects to comare to measurement.

Optimization of pad response function

- * For 2 MΩ / and 100 μm gap, the PRF is calculated to have a standard deviation of 700 μm
 - measurements are underway to verify this

TPC simulation package

- *written in Java
- *easy to use
- *can build arbitrary TPC with GEM readout
- *any readout pad structure can be defined
- *sophisticated tracking algorithm

- *only simulates direct charge signals
 - does not simulate induced signals

Designing readout pads

28 June

Adding an ionization track

Signals on pads

Comparison with prototype TPC data

Row charge

Track residuals

Track fitting

uses the Nonlinear Optimization Java Package (uncmin) translated to java by Steve Verrill

From TESLA TDR: advocates chevrons

- *Current favourite gas mix: Ar CF₄
 - fast at low fields
 - low transverse diffusion in magnetic fields
 - larger diffusion at higher fields

- *Single tracks with $-0.1 < \phi, \psi < 0.1$
- ***Seven pad geometries sample same ionization**

- *Single tracks with $-0.1 < \phi, \psi < 0.1$
- *****Seven pad geometries sample same ionization

Defocussing in 1 cm GEM gap

Chevrons unnecessary in Ar CF₄ GEM TPC

Comparison of pads for Micromegas

New multiplexed readout structure

- * 3x multiplexing to readout 192 pads with 64 FADC channels
 - easy for cosmics,multiplicity islow!
 - should we consider multiplexing for the real TPC?
 - use long pads for triggering

old

installed, taking data

Test set 1 - n channels (49 to 49+n)

Test set 2 - (16-n) channels (49+n+1 to 64)

new

Construction of new TPC (TPC #2)

- *Cylindrical: fits TRIUMF (1T) and DESY (5T) magnets
 - acrylic tubes, outer diameter 22.2 cm
 - Use STAR-TPC electronics (256 channels)

HV end

Construction of new TPC (TPC #2)

*3D view of drift cage:

- resistive sheets to disperse charge (induction signals)
- cosmic tracking with direct charge signals
- simulation package development
- preparations for magnetic field tests
- **★**Interested in test beam studies mid/late 2003:
 - test beam facilities?