

Linear Collider TPC R&D at Carleton University

ECFA-DESY Linear Collider Workshop St. Malo, France

April 12-15, 2002

Dean Karlen / Carleton University

Carleton/Montreal GEM/TPC group: Bob Carnegie, Madhu Dixit, D.K., Ernie Neuheimer, Hans Mes, Jean-Pierre Martin, Kirsten Sachs

http://www.physics.carleton.ca/~karlen/gem

TPC R&D: recent results & plans

- Cosmic ray tracking studies (TPC#1)
 - data from Oct-Dec 2001
 - new fitting algorithm
- Simulation program
 - demonstration
 - comparison of data and MC
- Plans for new layout for readout pads
- Plans for new TPC (TPC#2)
 - concept / drawings
- Resistive Anode Studies

Tracking studies

Cosmic ray telescope Readout pad layout

Gain stability – Ar CO₂

y-z fit:

- for each row form weighted average of pulse arrival time
- perform unweighted linear fit of the 5 row y-coordinates vs row times
- pulse arrival time
 (50% rise) dependant
 on pulse amplitude
 - needs further study

- Not diffusion limited
 - pulse arrival time definition needs improving
 - 800 micron resolution independent of drift length

- Diffusion limited
 - less sensitive to pulse arrival time problem because of slow drift
 - 130 micron resolution for drift length < 1cm

10

- use model of uniform line of charge, with Gaussian transverse spread, σ
 - charge fractions given by integral over pad
- fit uses observed charge fractions within each row
 - min χ^2 with x_0 , ϕ and σ free
- ionization fluctuations
 - not included in model
 - unimportant for $\phi = 0$
 - leads to track angle effect on resolution

Line charge width – P10

Results from fit of data: diffusion apparent

- x₀ resolution
 from single row:
 - do fit excluding the row: x₀, φ, σ free
 - do fit for single row: only x₀ free
 - compare 1 row
 x₀ to 4 row x₀

Track x₀ resolution – Ar CO₂

- x₀ resolution
 from single row:
 - do fit excluding the row:
 - x_0 , ϕ free
 - σ fixed
 - do fit for single row: only x₀ free
 - compare 1 row
 x₀ to 4 row x₀

New fitting algorithm

- First fitting algorithm minimized χ² of comparison between observed and expected charge fractions in each row
 observed fractions are correlated (ignored)
 covariance depends on number of primary electrons observed (ignored)
- New scheme: use multinomial likelihood

$$\log L = \sum_{i=1}^{n_{pad}} n_i \log(p_i) + \text{constant}$$

- written in java
- simulates any planar GEM system
 - version 1.0 (alpha) released
 - see: www.physics.carleton.ca/~karlen/gem

👹 Gem Simulation Package			<u>_ </u>
File	Gem Action W	indow Help	
Defau	New Open Save as Add Part Delete Part Design GEM	Foil Gas Gap Pad Array Pad Mesh	

Arbitrary pad designs can be defined:

Example of line charge and electron cloud (viewed with 0.2 mm elements).

Time structure of event shown using histogrammer from the Java Analysis Studio (Tony Johnson)

Comparison of data and MC

 Total charge collected per row:

Comparison of data and MC

- Early stages
 - x resolution fairly well simulated
 - x resolution measurement
 - red = data
 - black = MC
 - time structure not yet well simulated

New layout for readout pads

- Plan to use 3x multiplexing to readout 192 pads with 64 channels of FADC
 - easy for cosmics, multiplicity is low!
 - should we consider multiplexing for the real TPC?
 - use long pads for triggering

Resistive Anode Studies

Average signal profile across 12 strips

Resistive Anode Studies

Theory

Consider a GEM with a resistive anode. Anode collects avalanche charge. Any localized charge signal will spread radially with time. The 2-D Telegraph equation:

-5.00E-02

0.00E+00

Time (ns)

Resistive Anode Studies

- Plans:
 - measure space point resolution with collimated x-ray source
 - optimize resistivity and pad geometry for best space point resolution and 2 track resolving power
 - improve modelling of signals

Summary

Continuing to make progress on many fronts:

- cosmic tracking
 - new fitting algorithm
 - new plan for layout of readout pads with multiplexing
 - new TPC being designed to be used in TRIUMF and DESY magnets with STAR TPC electronics
- simulation of GEM signals
 - transverse simulation is reasonably good
 - time structure simulation is poor (so far)
- interesting results from resistive anodes for inductive signals

http://www.physics.carleton.ca/~karlen/gem